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Introduction

The irregular and unpredictable time evolution of many nonlinear
systems has been dubbed ‘chaos.” It occurs in mechanical oscillators
such as pendula or vibrating objects, in rotating or heated fluids, in laser
cavities, and in some chemical reactions. Its central characteristic is that
the system does not repeat its past behavior (even approximately).
Periodic and chaotic behavior are contrasted in Figure 1.1. Yet, despite
their lack of regularity, chaotic dynamical systems follow deterministic
equations such as those derived from Newton’s second law.

The unique character of chaotic dynamics may be seen most clearly by
imagining the system to be started twice, but from slightly different
initial conditions. We can think of this small initial difference as resulting
from measurement error, for example. For nonchaotic systems this
uncertainty leads only to an error in prediction that grows linearly with
time. For chaotic systems, on the other hand, the error grows
exponentially in time, so that the state of the system is essentially
unknown after a very short time. This phenomenon, which occurs only
when the governing equations are nonlinear, is known as sensitivity to
initial conditions. Henri Poincaré (1854-1912), a prominent mathema-
tician and theoretical astronomer who studied dynamical systems, was
the first to recognize this phenomenon. He described it as follows: *. . . it
may happen that small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossible,
and we have the fortuitous phenomenon’ (Poincaré, 1913).

If prediction becomes impossible, it is evident that a chaotic system
can resemble a stochastic system (a system subject to random external
forces). However, the source of the irregularity is quite different. For
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chaos, the irregularity is part of the intrinsic dynamics of the system, not
unpredictable outside influences.

Chaotic motion is not a rare phenomenon. Consider a dynamical
system described by a set of first order differential equations. Necessary
conditions for chaotic motion are that (a) the system has at least three
independent dynamical variables, and (b) the equations of motion
contain a nonlinear term that couples several of the variables. The
equations can often be expressed in the form:
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dx,/dt=F(x;,x;, - .X,),
de/dt=F2(x15x2, o ~"xn)’

(1.1

dx,fdt=F,(x, %, %),

where n must be at least 3. Two examples of appropriate nonlinear
equations are:

dx;/dt=0x, 4+ fx, +yx,x,+ -+ dx,, } (12)

dx,/dt=ox, + fx, +ysinx, +- - -+ dx,

where a, f§, y, 6 are constants. In each case the nonlinear term couples
both x; and x,. Systems such as these are often chaotic for some choices
of the constants.

The fact that only three variables are required for chaos was surprising
when first discovered. We shall see that three-space is sufficient to allow
for (a) divergence of trajectories, (b) confinement of the motion to a finite
region of the phase space of the dynamical variables, and (c) uniqueness
of the trajectory. The nonlinearity condition is perhaps less surprising.
Solutions to linear differential equations can always be expressed as a
linear superposition of periodic functions, once initial transients have
decayed. The effect of a nonlinear term is often to render a periodic
solution unstable for certain parameter choices. While these conditions
do not guarantee chaos, they do make its existence possible.

The nonlinearity condition has probably been responsible for the late
historical development of the study of chaotic systems. Despite the fact
that chaotic systems are deterministic and are described by many of the
long-known classical equations of physics, the development of the
subject itself is more recent. This circumstance may arise from the fact
that, with the exception of some first order equations, nonlinear
differential equations are either difficult or impossible to solve analytic-
ally. Although it is sometimes possible to use linearized approximations,
the solution of nonlinear differential equations generally requires
numerical methods whose practical implementation demands the use of
a digital computer. The first numerical study to detect chaos in a
nonlinear dynamical system was that of Lorenz’s model of convective
fluid flow (Lorenz, 1963). Similarly, the majority of the diagrams in this
book are based upon the use of numerical methods on a personal
computer to solve nonlinear equations.

From these general comments on chaotic systems, we turn to the
physical system that is the focus of this work — the damped, driven
pendulum. The choice of the pendulum as a model system has strong
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historical precedent in physics. Galileo postulated the constancy of
period for small amplitude oscillations of the pendulum from observations
of swaying lamps in the cathedral at Pisa in 1581 (Robinson, 1921). He
took up the problem of the relationship between the period and
pendulum length in his famous Dialogue on the Two Principal World
Systems in 1632, and in 1637 he suggested that the square of the period
was proportional to the length of the pendulum for small oscillation
amplitudes (Dugas, 1958). The pendulum also served as a primary
timing mechanism for clocks and as a method of measuring variations in
the earth’s gravitational field. As a pedagogical device the pendulum has
long been a standard mechanical example in introductory physics and
classical mechanics courses. Now, 400 years after Galileo’s initial work,
the pendulum has again become an object of research as a chaotic
system. The references scattered throughout this work attest to its
popularity.

The damped, sinusoidally driven pendulum of mass m (or weight W)
and length [/ is described by the following equation of motion:

mlzg2—9+ do

iz ya+ Wisin 8= Acos(wpt). (1.3)

This equation expresses Newton’s second law with the various terms on
the left representing acceleration, damping, and gravitation. The angular
velocity of the forcing, wp, may be different from the natural frequency of
the pendulum. In order to minimize the number of adjustable parameters
the equation may be rewritten in dimensionless form as:

d26/dt* + (1/q)df/dt + sinf = gcos(wpt) (1.4)

where g is the damping or quality parameter, g is the forcing amplitude,
not to be confused with the gravitational acceleration, and wy, is the
drive frequency. The low-amplitude natural angular frequency of the
pendulum is unity, and time is regarded as dimensionless. (This
particular notation follows that used by Gwinn and Westervelt. See,
for example, Gwinn and Westervelt (1986).) This equation satisfies the
necessary conditions for chaos when it is written as a set of first order
equations:

dw/dt = —(1/q)w —sinB + gcoso,
df/dt=w, (1.5)
do/dt = wp,

The variable ¢ is introduced as the phase of the drive term. The
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necessary three variables (w,0,¢) are evident, and the sinf and gcos¢
terms are clearly nonlinear. Whether the motion is chaotic depends
upon the values of the parameters g, wp, and g. For some values the
pendulum locks onto the driving force, oscillating in a periodic motion
whose frequency is the driving frequency, possibly with some harmonics
or subharmonics. But for other choices of the parameters the pendulum
motion is chaotic. One may view the chaos as resulting from a subtle
interplay between the tendency of the pendulum to oscillate at its
‘natural’ frequency and the action of the forcing term. The transitions
between nonchaotic and chaotic states, due to changes in the parameters,
occur in several ways and depend delicately upon the values of the
parameters.

A variety of analytic and computational tools may be used in the study
of chaotic systems. In Chapter 2 several of these are discussed. The
pendulum’s phase space and its properties are described, together with
the conceptual device known as the Poincaré section. Then, since
Fourier spectra are an indicator of chaotic motion, some elements of
Fourter analysis are outlined. Chapter 3 is a description of the application
of these and other techniques to the pendulum.

The driven pendulum would seem to be one of the simplest physical
systems. Yet its behavior is rich and complex. The study of its motion
can be facilitated by simple mathematical models formulated as difference
equations, that provide a discrete mapping of the system from one state
to another. Mappings have the advantage of being conceptually simple
and numerically efficient, and they may be used as paradigms for various
aspects of the pendulum motion. Chapter 4 contains discussions of three
such maps, the logistic map, the circle map, and the horseshoe map. We
use them to provide insight into the behavior of the pendulum.

Chapter 5 is concerned with the geometric structure of the attractor
that describes the chaotic pendulum. The attractor, and its Poincaré
section, are fractal structures with noninteger dimensionality. Various
approaches to the calculation of fractal dimension are described.
Another geometric feature is the exponential divergence of the chaotic
trajectories on the attractor. The rate of this divergence is characterized
by Lyapunov exponents. The calculation of these exponents and their
relation to (a) the fractal dimension, (b) the dissipative nature of the
pendulum, and (c) the duration of predictable behavior are also discussed.

Up to this point the presentation is focused on the fundamental ideas
of chaotic dynamics. In Chapter 6 we discuss the relationship between
these ideas and the analysis of experimental data. The developing
methodology for characterization of nonlinear dynamical behavior in
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experimental phenomena is complex. In this chapter we describe some of
these methods and apply them to experimental data from a physical
pendulum. The results of this study are then compared to those from the
numerical simulations developed earlier in the book. The experimental
data are also used to illustrate the possibility of prediction of chaotic
data. Finally, we illustrate, through numerical simulation, the control of
unstable dynamical states, in an otherwise chaotic pendulum.

Chapter 7 concludes the book with a brief survey of chaotic behavior
in physical systems, including lasers, chemical reactions, fluids, crystal
growth, and earthquakes. We emphasize the extension of chaotic
dynamics to spatially extended systems having many degrees of freedom.
Finally, the application of chaotic dynamics to quantum systems, and
the connection between chaos and irreversibility are also discussed briefly.

Two appendices present numerical aspects of this book. Appendix A is
a description of the Runge—Kutta algorithm used to solve the pendulum
differential equation. Appendix B provides brief descriptions and listings
of the computer programs used throughout the text, and in the computer
exercises given at the end of several of the chapters. The listings utilize
the language True BASIC'™, but they are adaptable to any compiled
BASIC or other high level language. (Interpreted BASIC, which is
typically delivered with current microcomputers, is too slow for most of
these simulations. The exceptions are the mappings in Chapter 4.) A
third appendix, C, provides solutions to selected problems.



